

The Geothermal Open Laboratory: a free space to measure thermal and hydraulic properties of geological materials

UNESCO IGCP 636 Meeting, November 21st, 2017

jasmin.raymond@inrs.ca

Jasmin Raymond, Félix-Antoine Comeau, Michel Malo, Daniela Blessent and Idalia Jacqueline López Sánchez

The LOG (Laboratoire ouvert de géothermie)

To measure thermal and hydraulic properties of geological materials

- Guarded heat flow meter
- Infrared scanner
- Needle probe
- Gas permeameterporosimeter
- Portable permeameter

Économie, Science et Innovation

Québec

Fonds de recherche sur la nature et les technologies

The LOG (Laboratoire ouvert de géothermie)

Open access in exchange of contributions to a shared database

- Users can do its own analysis for free
- Results are compiled in a common database
- Sample location and geological description have to be supplied
- All data become public three years after analysis

Guarded heat flow meter

Laser comp FOX-50

- Steady-state thermal conductivity ($\lambda W/mK$)
- Heat transferred across the whole sample
- Hot and cold plate
- Bulk measurement
- Operation temperature -10 °C to 190 °C
- Volumetric heat capacity possible (C J/m³K)

Sample — Heat/cold source — Temperature sensor — Insulation —

Guarded heat flow meter

Cylindrical core plugs

- 25 61 mm diameter
- Up to 25 mm thickness
- Flatness and parallelism within
 0.03 mm and 0.1 mm
- 0.1 to 10 W m⁻¹ K⁻¹ (\pm 3 %)
- ± 0.01 °C temperature control

Infrared scanner

LGM Lippmann TCS

- Transient thermal conductivity (λ W/mK)
- Punctual measurements along scan lines
- Heat pulse sent by a laser
- Infrared temperature sensors
- No contact with sample
- Thermal diffusivity from temperature offset $(\alpha = \lambda/C m^2/s)$

Sample

Heat/cold source

Temperature sensor

Infrared scanner

Flat and cylindrical sample faces

- 40 to 500 mm in length
- Spatial deviation of the sample surface
 5 mm
- Need black paint
- 5 mm s⁻¹ scanning speed
- 0.2 to 25 W m⁻¹ K⁻¹ (\pm 3 %)
- 0.6×10^{-6} to 3.0×10^{-6} m² s⁻¹ (± 5 %)

Needle probe

Decagon KD2Pro

Transient thermal conductivity (λ – W/mK)

- Heat pulse sent by a needle
- Needle pushed / hole drilled
- Best for unconsolidated sediments
- Thermal diffusivity with a dual needle
 (α = λ/C m²/s)

Sample ☐ Heat/cold source ☐ Temperature sensor ☐

Needle probe

Soft/hard samples

Needle	KS-1	TR-1	SH-1 (dual)	RK-1
Material	Liquid and paste	Soft solid (soil)	Soft solid (soil)	Hard solid (rock)
Diameter (mm)	1.3	2.4	1.3	3.9
Length (cm)	6	10	3	6
Thermal conductivity range (W m ⁻¹ K ⁻¹)	0.02-2.00	0.1-4.0	0.02-2.00	0.1-6.0
Thermal conductivity accuracy (%)	5	10	10	10
Thermal diffusivity range (m ² s ⁻¹)			1.0×10 ⁻⁷ - 1.0×10 ⁻⁶	
Thermal diffusivity accuracy (%)			10	

Gas permeameter-porosimeter

Core Test Systems AP-608

- Porosity according to Boyle's law (n)
- Pressure exerted by a mass gas is inversely proportional to its volume
- Digital caliper for sample volume
- Permeability based on transient pressure decay (k – m² or D)
- Darcy's law analysis
- Klinkenberg correction for gas slippage
- 34.5 689.5 bar confining pressure

Gas permeameter-porosimeter

Cylindrical core plugs

- 25.4 mm or 38.1 mm diameter
- 25.4 to 101.6 mm length
- Flat and parallel
- Room temperature
- Air and helium
- Porosity at 13.8 bar
- 0.1 40 %
- Permeability with 6.9 17.2 bar pulse
- 0.001 mD to 10 D

Portable permeameter

Core Laboratories PPP-250

- Permeability based on transient pressure decay (k – m² or D)
- Darcy's law analysis
- Probe tip on rock surface
- Gas reservoir for field measurements

Portable permeameter

Core samples or flat outcrop surfaces

- At the core shack or in the field
- 1.7 bar injected in rock mass
- Compressed air
- 0.001 mD to 5 D

Additional infrastructure and instruments

Not operated with open access

- Medical CT-Scan
- Thermal response test unit with heating cables
- Pilot ground heat exchanger site

INRS ground heat exchanger site

- 1 GHE 154 m deep
- 2 observation wells 42 m deep

Legend

- 1- Backfil, ground and till deposit with pebbles
- 2- Clay and weathered rock
- 3- Gray shale rock
- 4- Greenish-gray shale rock
- 5- Dark-gray shale rock

A and C: Monitoring borehole

- B: Experimental geothermal borehole (1U-pipe)
- ▼: Water level (6ft)
- —: Fracture zone (82- 98ft;118-125ft; 310ft; 450ft)

Conclusions

- The LOG is the infrastructure needed to characterize subsurface thermohydraulic properties and better constrain numerical model development
- Hope to host your analysis at INRS!

