

PRIMER ENCUENTRO UNESCO: ENERGIA GEOTERMICA EN EUROPA Y EN LAS AMERICAS

Comsol Multyphysics

Daniel Balzan Alzate
Estudiante Ingeniería Ambiental UdeM
María Isabel Vélez

Content

- Introduction
- Heat transfer in porous medium
 - Numerical model
 - Analytical model
- Heat transfer in fractured porous medium
 - Numerical model
 - Analytical model
- Conclusion

Introduction

Comsol's user interface

Model Builder

Introduction

Parameter assignment

Introduction

Heat transfer in porous medium

UNIVERSIDAD DE MEDELLIN

- Heat transfer by conduction, advection and mechanical dispersion
- Temperature evaluated at:
 - 2148 days
 - 4262 days

Heat transfer in porous medium

Analytical and numerical results

Heat transfer in fractured porous medium Temperature (desc)

- Heat transfer by conduction into the matrix and advection along the fracture (no mechanical dispersion)
- Temperature evaluated at 5000 s and 10000 s

Heat transfer in fractured porous medium

- Fracture is represented by an equivalent porous medium (EPM)
 - Mesh size limitation (2D and smaller domain)
 - Equivalent hydraulic conductivity for the fracture zone:

$$K_f = \frac{\gamma(2b)^2}{12\mu}$$
• b : Fracture aperture (m)
 μ : Water dynamic viscosity (Pa·s)

• K_f : Fracture zone hydraulic conductivity (m/s)

 γ : Water specific weight (N/m³)

UNIVERSIDAD DE MEDELLIN

Heat transfer in fractured porous medium

- Temperature boundary condition is applied to a line
- Refined mesh close to the fracture

Fracture zone width: 3x10⁻⁴ m where constant temperature is applied

Heat transfer in fractured porous medium

Temperature along the fracture

UNIVERSIDAD DE MEDELLIN

Heat transfer in fractured porous medium

Temperature in the porous matrix

Heat transfer in fractured porous medium

Temperature boundary condition to the discrete fracture

Conclusions

- Good numerical approximations for heat transfer in the porous medium and along a fracture were obtained
- A limitation of the heat transfer in porous medium Comsol module has been identified
 - Among the boundary condition options, there is not the possibility to set a temperature boundary condition to a point
 - The discrete fracture is independent of the matrix (nodes are not common or superposed, as in HGS)

Cultural Organization

Gracias

UNIVERSIDAD DE MEDELLIN